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ABSTRACT 
A rigorous Finite Element (FE) formulation based on an enthalpy technique is developed for solving 
coupled nonlinear heat conduction/mass diffusion problems with phase change. The FE formulation consists 
of a fully coupled heat conduction and solute diffusion formulation, with solid-liquid phase change, where 
the effects of pressure and convection are neglected. A full enthalpy method is employed eliminating 
singularities which result from abrupt changes in heat capacity at the phase interfaces. The FE formulation 
is based on the fixed grid technique where the elements are two dimensional, four noded quadrilaterals 
with the primary variables being enthalpy and average solute concentration. Temperature and solid mass 
fraction are calculated on a local level at each integration point of an element. 

A fully consistent Newton-Raphson method is used to solve the global coupled equations and an Euler 
backward difference scheme is used for the temporal discretization. The solution of the enthalpy-temperature 
relationship is carried out at the integration points using a Newton-Raphson method. A secant method 
employing the regula falsi technique takes into account sudden jumps or sharp changes in the enthalpy-
temperature behaviour which occur at the phase zone interfaces. The Euler backward difference integration 
rule is used to calculate the solid mass fraction and its derivatives. 

A practical example is analysed and results are presented. 

KEY WORDS Finite element Heat conduction/diffusion Phase change Enthalpy method 

INTRODUCTION 

Many phase change problems encountered in the material processing industry are not only heat 
conduction dependent but are also influenced by the mass diffusion of the material constituents, 
where the two processes are coupled by the phase change mechanism. This phase change 
mechanism is, in turn, dependent on the local temperature and constituent concentration fields. 
Depending on the process, this mechanism can be governed by the equations of state (i.e. the 
phase diagram) where local thermodynamic equilibrium with respect to the material constituents 
is assumed - this is the case for most numerical models1,2,3. 

Different models representing the phase change process on the microscopic level have been 
developed; the lever rule model, where local thermodynamic equilibrium with respect to the 
material constituents is assumed in both the liquid and solid phases ('equilibrium model') and 
the Scheil model, where solid constituent diffusion is assumed to be negligible and only the 
constituent concentration in the liquid phase is at thermodynamic equilibrium ('non-equilibrium 
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model'). The type of model chosen not only affects the local phase change description but also 
affects the global variations in constituent concentration and temperature. The solid mass fraction, 
which is used as a measure of phase change, is therefore a function of temperature and average 
constituent concentration. If the global conservation equations are cast in a continuum form, 
the material constitutive and thermodynamic coefficients will, in turn, be functions of solid mass 
fraction. Therefore, what happens on a global level, governed by the continuum conservation 
equations, affects what happens on a local level, governed either fully or partially by the equations 
of state, and vice-versa. This results in a tightly coupled system of equations which describe the 
process. 

Typical industrial processes that would be described by this set of equations are, among others, 
the alloy solidification process, the freezing or melting of solutions (e.g. desalination of water) 
and industrial diamond synthesis. It is appreciated that in some of these processes fluid convection 
plays a dominant role but the model described in this work is considered as a first step in 
modelling the particular process. 

Depending on the material and process the phase change can be discrete, take place over a 
region (i.e. mushy phase change) or both. Different numerical techniques have been used to 
tackle these phase change problems. The front tracking technique is used for discrete phase 
change where an accurate description of the phase interface is required4,5. Conversely, the fixed 
grid method is preferred for diffuse mushy or mushy/discrete phase change. Some advantages 
of the fixed grid method are that it lends itself to easy implementation of continuum based 
formulations and it is computationally inexpensive when compared to the front tracking scheme. 
Much finite volume work in the field of alloy solidification has been conducted using the fixed 
grid continuum approach2,3,6. In contrast, little work in the finite element field has been published, 
besides that of Porier and Heinrich7. This paper therefore presents a mathematically rigorous 
fixed grid finite element formulation using an enthalpy technique to model the coupled phase 
change problem. 

PROBLEM DEFINITION 

The global conservation equations are that of energy (Fourier's law) and the conservation of 
solute (Fick's law) which are expressed as: 

(1) 

and 

(2) 

respectively. 
Both essential and natural boundary conditions are defined on different parts of the boundary 

of the domain. The essential boundary condition prescribes a given temperature gH and/or a 
given solute concentration gC which may depend on both position and time. The natural boundary 
condition can be described as a heat flux hH and/or solute flux hC. The heat flux hH may depend 
on temperature, position and time, and can constitute an applied heat flux, radiative flux or 
convective flux. The solute flux hC may depend on solute concentration, position and time, and 
constitutes an applied solute flux. 

The internal heat generation QH is expressed as QH = QH(T, x, t) and the solute source QC is 
expressed as . 

The material properties vary according to the phase of the material. The material is considered 
to have a maximum of three phases (i.e. solid, liquid and mush) at any one time. The 
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thermodynamic coefficients (effective specific heat Cp), the constitutive coefficients (conductivity 
K, and diffusivity D) and density p of the phase mixture are expressed in terms of a lever rule 
with respect to the solid mass fraction Φ, with the exception of conductivity, which is expressed 
in terms of the phase volume fraction gα where a represents solid (S) or liquid (L) phase. These 
properties allow a nonlinear dependence on temperature T and average solute concentration . 

A summary of the material properties defining the phase mixture follows. 

(a) The solid mass fraction is expressed as, 

(b) The effective specific heat of the phase mixture Cp is expressed as, 
Cp = Cpo – L∂Φ/∂T (3) 

where Cpo is the lever rule specific heat of the phase mixture and is expressed as, 
Cpo = ΦCS

P(T, x, t) + (1 – Φ)CL
p(T, x, t) (4) 

and L is the latent heat (enthalpy of fusion), which is expressed as, 

(5) 

where CS
p = CS

P(T, x, t) is the specific heat of the solid, CL
p = CL

p(T, x, t) is the specific heat of the 
liquid and ∆Hf

 ref is the heat of formation of the liquid alloy which is constant. Dependency on 
the solute concentration of Cα

p in both phases are ignored. 
(c) The average solute concentration of the phase mixture is expressed as, 

(6) 
where is the average solute concentration in the solid and is expressed for the case of zero 

local solid diffusion by and for the local solid diffusion case as = CS 

where CS = CS(T, x, t) in the mushy region and in the solid. The term is the 
average solute concentration of the solute in the liquid, where which is expressed in 
the mushy region as CL = CL(T, x, t) and in the liquid region as Complete solute 
mixing is assumed within the liquid phase and undercooling is neglected. As a result, the dendrite 
tips are located at the equilibrium liquidus temperature. 
(d) The phase mixture density p is expressed as, 

p = gSpS
* + gLpL

* (7) 
where gS = (p/pS

*)Φ is the solid volume fraction, gL = (p/pL)(1 — Φ) is the liquid volume fraction, 
pS

* is the actual solid density and pL
* is the actual liquid density. Note that the Oberbeck-

Boussinesq approximations are used where it is assumed that p is constant (except in the buoyancy 
terms for the fluid flow case). To maintain phase mixture saturation, solid and liquid densities 
are assumed to be equal, therefore pS

* = pL
* = constant. From these assumptions therefore, gS = Φ 

and gL = (1 – Φ). 
(e) The conductivity of the phase mixture is expressed as, 

(8) 
where KS is the conductivity tensor for the solid and KL is the conductivity tensor for the liquid. 
Note that Kα is allowed to be anisotropic although symmetry is assumed8. 
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(f) The diffusivity of the phase is expressed as, 
(9) 

where DS is the diffusivity of the solid and DL is the diffusivity of the liquid. It is assumed that 
the solid diffusion is zero, therefore DS = 0. 

The enthalpy approach 
In the phase change region the specific heat Cp experiences Dirac-delta behaviour (Figure 1) 

which leads to significant numerical difficulties when trying to solve the conservation of energy 
equation. To circumvent this difficulty, enthalpy is introduced into the conservation equation 
(1) to give, 

(10) 

By rewriting the rate term in (10), in terms of enthalpy, numerical difficulties are only avoided 
when a non-discrete phase change takes place where the T – H curve is a smooth function 
throughout the domain. However, as illustrated in Figure 1, the T – H curve exhibits a 
discontinuity at the eutectic point of an alloy or at the melting temperature of a pure substance. 
Therefore the enthalpy becomes multi-valued, making the accurate solution of equation (10) 
very difficult and energy conservation cannot be ensured. If enthalpy is chosen as the field 
variable, rather than temperature, the function becomes single valued and this problem can be 
overcome with the energy being totally conserved. From Figure 1, it is clear that the H – T 

curve experiences no discontinuity and also , which is , is zero in the discrete phase change 

region. Equation (10) expressed in terms of enthalpy is, therefore, 

(11) 

where the enthalpy for the phase mixture is expressed as, 
(12) 

where 

(13) 
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and 

(14) 

The advantage in using this enthalpy formulation is that it is characterized by a strictly decreasing 
or increasing enthalpy for solidification or melting respectively. It must be noted that even when 
using the full enthalpy approach the discontinuity which is implicit in the formulation cannot 
be correctly modelled using the fixed grid finite element formulation. Standard finite elements 
cannot handle a discontinuity within the elements and the jump in enthalpy will be smeared 
over the element or elements depending on the solution scheme used. It is also clear that to 
model this jump condition reasonably a fine mesh would have to be used. 

FINITE ELEMENT FORMULATION 

In this section, the solution of the global conservation equations of energy and solute, using a 
fixed grid finite element approach, is discussed. First, the strong form of the initial boundary-value 
problem (IBVP) is defined. This leads to the weighted residual or weak form of the problem. 
Next, the Galerkin approximation is introduced which, along with an assumed spatial 
discretization, leads to the finite element matrix form of the problem. The finite element matrix 
equations are then temporally discretized. The solution of the resulting nonlinear matrix of 
equations motivates the development of iterative algorithms. Finally, the linear problem generated 
by the iterative algorithms is discussed. 

STRONG FORM OF THE INITIAL BOUNDARY-VALUE PROBLEM 

Problem domain 

The problem is posed for a body occupying a spatial domain Ω, a finite region of RN where 
R is the set of real numbers and Nsd is the number of space dimensions. A general point in 
will be denoted as x = {xi}, i= 1,2,...,Nsd where denotes a closed domain, i.e. the total 
domain including boundaries. The closed domain is divided up into different subregions, with 

where (the solid region of the domain), (the liquid 
region of the domain), (the phase change region of the domain) and Τ denotes time. 
The three subdomains ΩS, ΩL and ΩM vary with time. When the width of ΩM tends to zero a 
discrete phase change results between ΩS and ΩL. This is described as where Ø 
denotes the empty set. 

The boundary of Ω, denoted Γ, is assumed to be piecewise smooth. At almost every point on 
Γ there is a unique outward normal unit vector n = (ni), i = 1, 2 , . . . , Nsd. In addition, Γ can be 
subdivided into two disjoint sets, Γg and Γh. Thus Γ admits the following decomposition 

and where and where the 
superposed bar represents set closure. 

The strong form 
The IBVP describing the coupled heat conduction/mass diffusion phase change process is 

defined. Therefore the strong form (S) of the IBVP can thus be stated as follows. 
Given p, CP, K, D, gH, gC, hH, hC, TO and 
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find 
expressed in section entitled Problem definition 

and 
expressed in section entitled Problem definition 

such that the following coupled equations hold: 

(15) 

and 

(16) 

where the essential boundary conditions are, 
(17) 

and 
(18) 

the natural boundary conditions are, 

(19) 

and 
(20) 

and the initial conditions are, 
(21) 

and 
(22) 

WEIGHTED RESIDUAL FORM OF THE 
INITIAL BOUNDARY-VALUE PROBLEM 

The 'weighted residual' or 'weak' form of (S) is generated by a suitable choice of solution and 
variational spaces and the application of the divergence theorem, Mitchell9 and Strang10. 

In order to develop a weak formulation for the IBVP, a total solution and a variational space 
are defined. Let H and w1 denote the enthalpy fields and and w.2 denote the solute concentration 
fields. The solution space L is defined as where LH = {H|H — gH on Γg with 
H = HL in ΩL, H = ΦHS + (1 - Φ)HL in ΩM and H = HS in ΩS}, and where on 
Γg with in ΩL, in ΩM

, and in ΩS}. 
The variational space V is defined as where VH = {w1|w1 = 0 on Γg} and 

VC = {w2|w2 = 0 on Γg}. 
Note that L is time dependent due to its use of the g-type condition, while V is time 

independent. 
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The weak form 
The weak form of the problem (W) is obtained by multiplying (15) and (21) by w1εVH and 

(16) and (22) by w2εVC, integrating over Ω, applying the divergence theorem, and making use 
of the boundary conditions (17)-(20) to simplify the result. This yields weak form for the IBVP 
as follows: 

Given p, CP, K, D, gH, gC, hH, hC, HO and 
find 

H: [0 ,Τ] → LH 

and 

such that for every wHεVH and wCεVC 

(23) 

(24) 
(25) 

and 
(26) 

The operators MH, KH, FH, HH, MC, KC, FC, HC and (· , ·) are defined respectively as: 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 
and 

(36) 
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Note that: 
(a) given suitable smoothness conditions a solution of (S) is a solution (W), (S) (W), 
(b) MH( , wH), KH

(H, wH), MC( , wC), KC(CL, wC), ( , wc) and (H, wH) are symmetric bilinear 
forms. 

GALERKIN APPROXIMATION OF THE INITIAL 
BOUNDARY-VALUE PROBLEM 

The Galerkin form is derived from the weak form by approximating the variational and solution 
spaces with finite-dimensional subspaces. 

The Galerkin approximation uses a finite number of linear independent functions to span a 
subspace Vh and Lh where and We represent Vh as where 
Vh

H = { w h
H | w h

H = ∑A = 1 NA(x)dA,Wh
H = 0 on Γg} and Vh

C = {W
h
C|Wh

C = ∑A = 1 W
h

C = 0 on Γg, 
where NA, A = 1, 2 , . . . , n, are linearly independent functions in V and dA and are constants. 

Similarly, the approximation to the trial solution space where Lh
H = 

{Hh|Hh = vh
H + gh

H, vh
HεVh

H, gh
HεLh

H} and Lh
C = {Ch|vh

C + gh
C, vh

CεVh
C

, gh
CεLh

C}. 

The Galerkin form 
The galerkin approximation (G) of the IBVP may therefore be stated as follows. 
Given p, Cp, K, D, gH, gC, hH, hC, HO and , find 

Hh = vh
H + gh

H:[0,τ] → Lh
H 

and 

such that for every wh
HεLh

H, and wh
CεLh

C, 
(37) 
(38) 
(39) 
(40) 
(41) 

and 
(42) 

FINITE ELEMENT MATRIX APPROXIMATION OF THE 
INITIAL BOUNDARY-VALUE PROBLEM 

The finite element matrix equations are derived from the Galerkin form by defining the 
approximation of the variational and solution spaces based on a given spatial discretization. 

A finite element basis for Lh and Vh is defined by using a finite number of linear independent 
functions Na(x) which span Lh and Vh, thus we can write, 

(43) 

(44) 



A FINITE ELEMENT ENTHALPY TECHNIQUE 915 

and 
(45) 

(46) 

From (43), we see that a function in Vh
H may be represented in terms of a time-varying vector 

h of NH
EQ components that are coefficients associated with shape functions. Similarly a function 

in Vh
C may be represented in terms of a time-varying vector c of NC

EQ components that are 
coefficients associated with shape functions. Note that the time-dependent coefficients gHa and 
gCa are chosen so that gh

H is a 'good' approximation of gH and gh
C is a 'good' approximation of gC. 

The finite element matrix form 
The finite element matrix form (M) of the IBVP is: 
Given p, Cp, K, D, gH, gC, hH, hc, HO and find 

h: [0, τ]→RNHeq 

and 
C: [0,τ]→RNCeq 

such that 
(47) 
(48) 
(49) 

and 
c(0) = co 

where h(t) and c(t) are respectively vectors of nodal enthalpy and solute concentration at time 
t, and ho and co are a 'good' approximation to the exact initial enthalpy HO and , respectively. 

TEMPORAL ALGORITHM 

The semi-discrete matrix form (M) of the coupled nonlinear ordinary differential equations is 
discretized in terms of time where the real enthalpy h(tn), the real solute concentration c(tn) and 
their rate terms are approximated by discrete values hn and cn, and, and , respectively. The 
discrete solution times are given by tn = n∆t, where ∆t can be a constant or varying time step 
depending on the degree of nonlinearity of the problem. 

Generalized trapezoidal rule 
The time-integration method chosen is the generalized trapezoidal rule (T). Applying it to the 

matrix form of the problem (M) leads to the following time-integration scheme: 
Given M, KH, FH, NC and FC, as in equations (47)-(48), find 

hn, nε{0, ··· Nsteps} 
and 

cn, nε{0, 1 ··· Nsteps} 
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such that 
(51) 
(52) 

ho = ho (53) 
co = co (54) 

(55) 
and 

(56) 
where a = [0, 1]. 

In this algorithm a is chosen so that the solution will be unconditionally stable, as in most 
solidification problems the solution is sought over very long time periods compared to the 
stability limit for the explicit form of the operator (i.e. when α = 0), Abaqus11. Of these algorithms, 
the central difference method pi.e. α = ½) has the highest accuracy. However, this method tends 
to produce oscillations in the early time solution. These oscillations are not present in the 
backward difference method (i.e. a = 1). Thus the backward difference method is used. 

NONLINEAR SOLUTION SCHEME 

The iterative scheme proposed for solving the nonlinear algebraic problem is a variant of 
Newton-Raphson iteration, which makes use of the continuity of the temporal discretization. 
This predictor-corrector method makes use of a fully 'consistent' linearized operator to compute 
solution increments, which results in a non-symmetric linear equation system where quadratic 
convergence is ensured, Hughes12. 

Newton-Raphson iteration scheme 
Obtain values hn„+ 1 and cn+1 such that the residual r(hn+1, rn+1) = 0 where 

(57) 

where 

(58) 

and 

(59) 

Using a Taylor series expansion about the exact solutions cn+1 and hn+1, we may approximate 
the residual r at the values hin+1 and cin+1 and by ignoring higher order terms in the Taylor 
expansion, we may write, 

(60) 
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The solution of this equation allows a better approximation to the exact solution, thus 
(61) 

and 
(62) 

In order to evaluate the residual and the Jacobian operator at the specific sampling point 
the mass fraction and the temperature have to be calculated from the given 

enthalpy and average solute concentration fields as follows: for time n + 1 and for the ith global 
iteration, and 

These unknown variables, temperature and solid mass fraction at are termed 
the state variables of the problem. The state variables are based on the micromechanics of the 
phase change problem. Therefore, the state variables, will describe the phase change kinetics of 
the problem depending on the type of microscopic phase evolution model chosen. 

The temperature and solid mass fraction are calculated using the temperature 
(T)-enthalpy (H) relationship (shown in Figure 1) coupled with the microscopic phase evolution 
model. This is based on the expression for the average solute concentration, equation (6). As the 
(T-H) relationship is unknown and the phase evolution model is not explicit, a predictor-corrector 
Newton-Raphson type algorithm is used. This is coupled with a trapezoidal integration scheme 
of the mass fraction evolution13. The (T-H) curve experiences sharp change in slope at phase 
interfaces. At these points, the Newton-Raphson method will not converge, so the secant method 
employing the reguli falsi technique is then used to obtain convergence (McAdie13). 

NUMERICAL CONSIDERATIONS 

To solve the equations which make up the residual vector and Jacobian matrix numerically, a 
Newton Cotes numerical integration scheme is chosen. This is because the sampling points are 
at the nodes of the element resulting in a diagonal mass matrix contribution to the Jacobian. 
This is equivalent to using a lumped mass method. In contrast, the Gaussian quadrature scheme, 
with sampling points positioned inside the element, would cause the mass matrix contribution 
to the Jacobian to be fully consistent. It has been found that oscillations, which appear in the 
solution when using a fully consistent mass matrix Jacobian contribution, do not occur when 
this matrix is lumped. It must be noted that a combination of the two schemes can also be used 
(i.e. Newton Cotes for the mass terms and Gaussian quadrature for the conductivity and diffusivity 
terms11. 

As the enthalpy solution is not smooth at the phase front low ordered linear elements are 
used, since better behaviour from higher-order elements cannot be expected in this case. 

SOLIDIFICATION OF AN AL-SI INVESTMENT CASTING 

A two-dimensional analysis of a cross-section of a thin walled aluminium alloy investment casting 
was made. The mould was made of a ceramic shell, which was preheated to the pouring 
temperature of the Al-Si (800°C). Once the metal was poured, the mould and casting were left 
to cool on a sand bed. A geometric description of the 2D cross-section, with the boundary 
conditions, is given in Figure 2. As it is symmetric, only half the cross-section was analysed. 

The phase diagram for the Al-Si system is given in Figure 3. The alloy used is L99, composed 
of 93% Al and approximately 7% Si, and has the following material properties: density 
p = pS = pL = 2700 kg/m3, latent heat L = 3.975 x 105 J/kg, specific heat capacity CP = CPS = 
CPL= 1.196 x 103 Jkg - 1 K - 1 , conductivity K = KL = KS = 226 Wm-1 K-1 and liquid diffusion 
coefficient DL = 4.8 x 10-9 m2 s - 1 . The material properties for the ceramic shell were 
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approximated by those of sand as the foundry had no thermal data for their ceramic. The 
assumed thermal properties are: density p= 1830 kg/m3, specific heat capacity CP = 0.9635 x 
103 J k g - 1 K - 1 and conductivity K = 0.7325 Win-1 K - 1 . Radiation was an important 
mechanism for heat transfer across the boundary in this problem, but is expensive to calculate. 
Experiments were conducted, the results of which have been used in conjunction with inverse 
methods to obtain an equivalent heat transfer coefficient. 

An unstructured mesh of 701 4-noded elements was used to solve the problem. This is shown, 
along with contours of temperature and solid mass fraction after 520 seconds, in Figure 4. The 
position of the mushy zone at this particular time can be seen to be around the centre of the 
thin section of the part. Figure 5 gives a zoomed view of the boxed area, showing contours of 
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solid mass fraction and the percentages of dendritic and eutectic solidification. These clearly 
show the onset of dendritic solidification before the onset of eutectic solidification. The eutectic, 
although in principle a discrete position, is smeared across the width of an element. 

The left side of Figure 6 shows, at the end of solidification, the percentage of solidification 
that was dendritic, the remainder being eutectic. Note that the maximum value was 50% and 
the variation was considerable, suggesting an unstable crystal structure and, possibly, poor 
mechanical properties. The right side of Figure 6 shows the predicted level of porosity, as 
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calculated during the analysis using the Niyama criterion, also at the end of solidification. The 
higher values of porosity (>30) are found in the cup and in the cross-bar (which are of no real 
consequence) and around one-fifth of the way down the thin section. This coincides with a region 
where the model predicted zero dendritic solidification and, more importantly, the region where 
porosity was found in the actual casting. 

CONCLUSION 

A coupled nonlinear heat conduction/mass diffusion phase change formulation has been 
developed using an enthalpy technique for the fixed grid finite element method. The results 
clearly demonstrate the local/global coupling, in a problem of practical relevance. The enthalpy 
method is demonstrated to be proficient and accurate when dealing with this type of 
mushy/discrete phase change problem where energy conservation is ensured. 

A real, investment casting problem has been analysed and defects arising in the casting have 
been successfully predicted. 
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